

Y-12 NATIONAL SECURITY COMPLEX

Y-12 GROUNDWATER PROTECTION PROGRAM GROUNDWATER AND SURFACE WATER SAMPLING AND ANALYSIS PLAN FOR CALENDAR YEAR 2009

December 2008

Prepared by

Elvado Environmental LLC Under Subcontract No. 4300063119

for the

Environmental Compliance Department Environment, Safety, and Health Division Y-12 National Security Complex Oak Ridge, Tennessee 37831

Managed by

Babcock & Wilcox Technical Services Y-12, LLC for the U.S. DEPARTMENT OF ENERGY under contract No. DE-AC05-00OR22800

MANAGED BY BWXT Y-12, L.L.C. FOR THE UNITED STATES DEPARTMENT OF ENERGY

UCN-13672 (11-03)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Y-12 GROUNDWATER PROTECTION PROGRAM GROUNDWATER AND SURFACE WATER SAMPLING AND ANALYSIS PLAN FOR CALENDAR YEAR 2009

December 2008

Prepared by

Elvado Environmental LLC Under Subcontract No. 4300063119

for the

Environmental Compliance Department Environment, Safety, and Health Division Y-12 National Security Complex Oak Ridge, Tennessee 37831

Managed by

Babcock & Wilcox Technical Services Y-12, LLC for the U.S. DEPARTMENT OF ENERGY under contract No. DE-AC05-00OR22800

TABLE OF CONTENTS

Sectio	<u>on</u> <u>F</u>	age
List of	f Figures	. iii
List of	f Tables	. iii
List of	f Acronyms and Abbreviations	. iv
1.0 IN	NTRODUCTION	. 1
2.0 M	MONITORING LOCATIONS	. 3
3.0 Fl	IELD MEASUREMENTS AND ANALYTICAL PARAMETERS	. 5
4.0 S	AMPLE PLANNING, COLLECTION, AND HANDLING	. 7
5.0 R	EFERENCES	11
<u>APPE</u>	<u>ENDICES</u> :	
A	FIGURES	
В	TABLES	
_		
E		
F		
G	MANAGEMENT OF PURGED GROUNDWATER	
C D E	CY 2009 GROUNDWATER MONITORING SCHEDULES ADDENDA TO THE CY 2009 SAMPLING AND ANALYSIS PLAN LABORATORY REQUIREMENTS (Bottle Lists, Holding Times, Turnaround Times, Elevated Minimum Detectable Activity) SAMPLING FREQUENCIES FOR MONITORING WELLS DURING CY 2009	

List of Figures

<u>Figure</u>	<u>Page</u>
A.1	Hydrogeologic regimes at the Y-12 National Security Complex
A.2	CY 2009 sampling locations in the Bear Creek Hydrogeologic Regime
A.3	CY 2009 sampling locations in the Chestnut Ridge Hydrogeologic Regime
A.4	CY 2009 sampling locations in the Upper East Fork Poplar Creek Hydrogeologic Regime
A.5	CY 2009 surface water sampling locations north of Pine Ridge
A.6	Westbay [™] monitoring system sampling port depths in well GW-726
A.7	Westbay [™] monitoring system sampling port depths in well GW-722
	List of Tables
<u>Table</u>	<u>Page</u>
B.1	Sampling locations, frequency, and analytical parameters for groundwater and surface water monitoring during CY 2009
B.2	Field measurements and analytes that comprise the elementary parameter groups for CY 2009 groundwater and surface water samples

List of Acronyms and Abbreviations

ACO Analytical Chemistry Organization
Bear Creek Regime Bear Creek Hydrogeologic Regime

BWXT Y-12, L.L.C.

Chestnut Ridge Regime Chestnut Ridge Hydrogeologic Regime

CY calendar year

DOE U.S. Department of Energy

East Fork Regime Upper East Fork Poplar Creek Hydrogeologic Regime

EPA U.S. Environmental Protection Agency
GWPP Groundwater Protection Program
GWMS Groundwater Monitoring Schedule

MAROS Monitoring and Remediation Optimization System

PDB passive diffusion bag (sampler)
REDOX oxidation-reduction potential
VOCs volatile organic compounds
Y-12 Y-12 National Security Complex

1.0 INTRODUCTION

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals:

- to protect the worker, the public, and the environment;
- to maintain surveillance of existing and potential groundwater contamination sources;
- to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line;
- to identify and characterize long-term trends in groundwater quality at Y-12; and
- to provide data to support decisions concerning the management and protection of groundwater resources.

Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation.

Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

The following sections of this report provide details regarding the CY 2009 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information.

The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2009) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E. The updated sampling frequency for each monitoring well to be sampled during CY 2009 is in Appendix F, and an approved Waste Management Plan is provided in Appendix G.

2.0 MONITORING LOCATIONS

The monitoring locations to be sampled by the Y-12 GWPP during CY 2009 (Table B.1) were selected based on results of a supplemental comprehensive assessment of the Y-12 GWPP using the Monitoring and Remediation Optimization System (MAROS) software (Babcock & Wilcox Technical Services Y-12, LLC 2008). The MAROS assessment provided recommendations (e.g., sampling locations and frequencies) for the active monitoring locations defined the Y-12 GWPP monitoring optimization plan (BWXT 2006a). The monitoring wells selected for sample collection in CY 2009 include semiannual, annual, biennial, and pentennial (once every five years) sampling frequencies (Appendix F). The final sampling frequencies for CY 2009 reflect results of a detailed evaluation of the MAROS recommendations by Y-12 GWPP staff. In addition to the final sampling frequency for each location, Appendix F contains the sampling frequencies presented in the baseline MAROS assessment (BWXT 2005), the Y-12 GWPP monitoring optimization plan, and the supplemental MAROS assessment.

The Y-12 GWPP monitoring network for CY 2009 includes 116 monitoring locations (Table B.1): 44 located in the Bear Creek Regime (Figure A.2), 10 located in the Chestnut Ridge Regime (Figure A.3), 62 located in the East Fork Regime (Figure A.4), and three located north of Pine Ridge (Figure A.5). Groundwater samples will be collected from a total of 104 monitoring wells, including 38 wells in the Bear Creek Regime (Figure A.2), five wells in the Chestnut Ridge Regime, and 61 wells in the East Fork Regime (Figure A.4). Two of these wells contain a WestbayTM multiport sampling system that allows collection of groundwater samples from several discrete depth intervals (Table B.1). Well GW-726, located in the Bear Creek Regime, will have samples collected from eight ports (Figure A.6) and well GW-722, located in the East Fork Regime, will have samples collected from five ports (Figure A.7). Samples of groundwater discharging from five natural springs will be collected during CY 2009, including two springs (SS-4 and SS-5) in the Bear Creek Regime (Figure A.2), two springs (SCR2.1SP and SCR2.2SP) in the Chestnut Ridge Regime (Figure A.3), and one spring (SP-17) in the East Fork Regime (Figure A.4).

Surface water samples will be collected from a total of 10 sampling locations during CY 2009, including four locations in the Bear Creek Regime, three locations in the Chestnut Ridge Regime, and three locations north of Pine Ridge. In the Bear Creek Regime, samples will be collected from three stations in the main channel of Bear Creek (BCK-04.55, BCK-09.40, and BCK-11.97) and from one station along a northern tributary (NT-01) to Bear Creek (Figure A.2). The tributaries located in the Chestnut Ridge Regime have been numbered from west to east (SCR1 through SCR5) and surface water samples will be collected from three of the tributaries at stations (SCR1.5SW, SCR3.5SW, and S17 [located in SCR5]) located along the north side of Bethel Valley Road (Figure A.3). The surface water sampling locations north of Pine Ridge (Figure A.5) include a tributary near the Scarboro Community (NPR12.0SW), a tributary to Mill Branch (NPR23.0SW), and Gum Hollow Branch near Country Club Estates (GHK2.51ESW).

3.0 FIELD MEASUREMENTS AND ANALYTICAL PARAMETERS

Before collecting samples at each monitoring location, field personnel will record (on Field Data Sheets) field measurements (Table B.2), including:

- depth to the static water level in monitoring wells;
- pH;
- water temperature;
- conductivity;
- dissolved oxygen; and
- oxidation-reduction potential (REDOX)

Field measurement of dissolved oxygen and REDOX will not be obtained for sampling ports of monitoring wells equipped with a WestbayTM multiport sampling system. Instead of measuring the depth to the static water level in each WestbayTM sampling zone, the potentiometric head (in ft) will be calculated from subsurface pressure measurements obtained.

For this Sampling and Analysis Plan, specific analytes are grouped by analytical method or by type (e.g., trace metals) and referenced as elementary parameter groups (Table B.1 and Table B.2). In addition to field measurements, most of the groundwater and surface water samples will be analyzed for the following suite of parameters (identified as the Standard Administrative Parameter Group):

- miscellaneous laboratory analytes (total suspended solids and total dissolved solids);
- major anions;
- trace metals (includes major cations);
- a comprehensive suite of volatile organic compounds (VOCs); and
- gross alpha and gross beta activity.

Beginning in CY 2009, selective parameter monitoring (SPM) will be performed on samples from monitoring wells with analytical results for at least eight samples obtained since January 1991. Historical data must clearly demonstrate that the selected parameters are the contaminants of concern and provide sufficient data for the other parameters without additional analyses. For example, samples from 35 monitoring wells will be analyzed only for VOCs (Table B.1), and historical data for these locations show consistently low results for inorganic and radiochemical analytes. The SPM elementary parameter groups reflect analytical methods (Table B.2) and are designed to obtain the data necessary to meet requirements of the GWPP monitoring program.

Samples from selected locations will be analyzed for specific radionuclides. The radionuclide analyses will supplement gross alpha and/or gross beta activity results, especially in cases where the gross activity reporting limits are elevated from interferences caused by a high dissolved solid content of the groundwater sample (see Appendix E).

4.0 SAMPLE PLANNING, COLLECTION, AND HANDLING

The monitoring locations to be sampled during CY 2009 are grouped by hydrogeologic regime to provide geographic areas for planning and tracking purposes. The CY quarter for sample collection at each monitoring location is provided in Table B.1.

A Groundwater Monitoring Schedule (GWMS) will be prepared by GWPP personnel for each sampling event of CY 2009. Each GWMS (four per year) will be issued before sample collection begins, will specify the sequence for collecting samples from the monitoring locations scheduled, and will include information necessary for field personnel to collect the required samples (e.g., containment requirements and previous pumping rates used to sample each well). The GWMS is an integral part of this document, and when issued, the GWMS for each CY 2009 sampling event is to be inserted (Appendix C) by the recipient.

Unfiltered samples will be collected semiannually (24 samples) or annually (118 samples, including 24 biennial and nine pentennial samples) from the monitoring locations during CY 2009. As summarized below, the number of samples to be collected during each CY quarter will range from 26 to 42, for an annual total of 142 samples.

Hydrogeologic	Number of Samples per Quarter of CY 2009						
REGIME/AREA	1st	2nd	3rd	4th			
Bear Creek Regime Chestnut Ridge Regime East Fork Regime North of Pine Ridge	32 0 0 3	8 0 31 0	16 0 26 0	0 10 16 0			
TOTAL:	35	39	42	26			

Personnel from the Environmental Sampling Section of the Y-12 Environment Compliance Department will be responsible for collection, transportation, and chain-of-custody control of all groundwater and surface water samples. Based on the analytical parameters for the CY 2009 monitoring locations (Table B.1 and Table B.2), personnel with the Y-12 Analytical Chemistry Organization (ACO) will prepare bottle lists that specify the sample container type, size, preservative, and the laboratory test identification needed for each sampling location (see Appendix E). Additionally, ACO personnel will generate a weekly tracking report to record the sample collection date and time for each monitoring location, the date that analyses are scheduled for completion, or when analyses are completed. Sample collection will be performed in accordance with the most recent version of operating procedures for obtaining groundwater samples (BWXT 2002a, BWXT 2004, BWXT 2006b, and BWXT 2007b) and surface water samples (BWXT 2002b). All field and laboratory activities will be performed in accordance with applicable requirements of the Y-12 Integrated Safety Management System and task-specific job hazard analyses.

Groundwater samples will be collected using the low-flow minimal drawdown method (low-flow method) during CY 2009 from most of the monitoring wells (Table B.1). A passive (no purging) sampling method will be used to collect samples at selected monitoring wells either by collecting a sample using the dedicated pump without purging (three wells) or by using a passive diffusion bag (PDB) sampler (31 wells). Additionally, groundwater samples from two wells (GW-722 and GW-726) that are equipped with a WestbayTM multiport sampling system will be collected following applicable procedures.

For the low-flow method, a bladder pump is permanently installed in each well that is scheduled for sample collection. If well construction prevents permanent installation (e.g., flush-mounted wells), then the pump and tubing will be installed at least 24 hours before sample collection and will be removed when sampling is completed. In accordance with the groundwater sampling procedure for the low-flow method (BWXT 2007b), groundwater is purged, and subsequently sampled, from the well at a flow rate (<300 milliliters per minute[ml/min]) which ensures minimal drawdown of the static water level, therefore isolating the stagnant water column above the intake of the pump. Groundwater samples are collected from a well after the water level is in steady-state drawdown (<0.1 ft over a 15-minute interval) and field parameters (pH, conductivity, water temperature, REDOX, and dissolved oxygen) have stabilized (minimal variation over four consecutive readings).

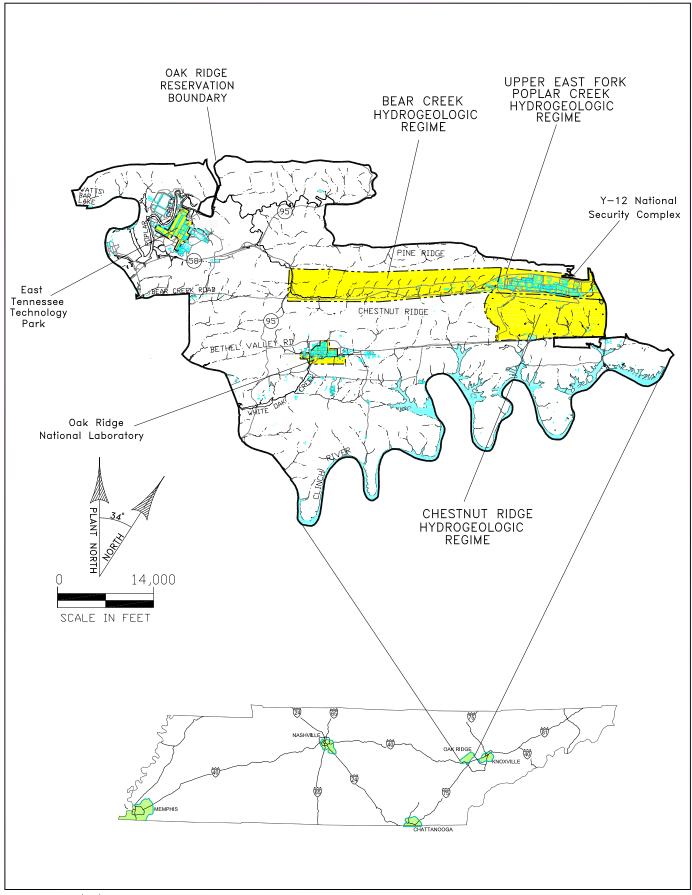
A "no-purge method" will be used for wells with low-flow sampling histories that demonstrate very low pumping rate (<50 ml/min) to meet the minimal drawdown requirement during purging and sample collection. For this method, field measurements will be obtained and groundwater samples will be collected after pumping the stagnant water (calculated volume) from the tubing. During CY 2009, the no-purge method will be used to collect groundwater samples from two wells (GW-065 and GW-623) in the Bear Creek Regime and one well (56-4A) in the East Fork Regime (Table B.1)

Passive diffusion bag (PDB) samplers will be used to evaluate VOC concentrations at 31 of the wells selected for VOC analyses only, including nine wells in the Bear Creek Regime, five wells in the Chestnut Ridge Regime, and 17 wells in the East Fork Regime (Table B.1). A PDB is polyethylene bag (semipermeable membrane) that is filled with deionized water, lowered to the monitored interval of the well, and remains in the well for at least two weeks to allow VOC concentrations in the bag to reach equilibrium (passive diffusion) with the surrounding groundwater. After retrieval, sample bottles for VOC analyses will be filled with water from the PDB.

Groundwater sampling and pressure profiling using a WestbayTM multiport sampling system at wells GW-726 (Figure A.6) in the Bear Creek Regime and GW-722 (Figure A.6) in the East Fork Regime will be performed in accordance with the operating procedures (BWXT 2002a and BWXT 2006b). The groundwater samples from each sampling port will be collected in 250-milliliter nonvented stainless steel WestbayTM sample collection bottles filled at the designated depth in the well. Once filled, the bottles will be raised to the surface and the groundwater will be transferred to laboratory sample containers. The sample collection bottles will be lowered, filled, and retrieved as many times as needed to completely fill the laboratory sample bottles. Groundwater in the first sample collection bottles retrieved from each sampling port will be used as a "formation rinse" to obtain field measurements and to condition the sample collection bottle for each zone.

In addition to the groundwater and surface water samples, field blanks and equipment rinsate samples will be collected at the frequencies and analyzed for the parameter groups specified on Table B.1. Field blank samples will be collected for at least 1% of the samples. Therefore, two field blank samples will be collected during CY 2009: in the Bear Creek Regime during the first quarter and in the East Fork Regime during the third quarter. An equipment rinsate sample will be collected from Westbay well GW-722 (Table B.1) immediately after field-cleaning the sampling equipment used to collect samples from the last sampling port (GW-722-17).

Trip blank samples and field duplicate samples will be prepared and handled in accordance with the *Field Quality Control Samples* operating procedure (BWXT 2007c) and will be analyzed using applicable procedures. Trip blank samples will be prepared for each cooler used to transport samples for volatile organic analyses. Because duplicate samples will be collected from at least 10% of the sampling locations, a total


of 15 field duplicate samples will be collected during CY 2009: six in the Bear Creek Regime, one in the Chestnut Ridge Regime, and eight in the East Fork Regime (Table B.1).

All groundwater and surface water samples will be relinquished under chain-of-custody control to the appropriate Y-12 ACO laboratory that will perform the analyses. The Y-12 ACO laboratories will perform each analyses within established holding times and deliver results in hard copy and electronic format within established turnaround times (see Appendix E).

5.0 REFERENCES

- American Public Health Association. 1992. *Standard Methods for Examination of Water and Wastewater*, 18th Edition.
- Babcock & Wilcox Technical Services Y-12 LLC. 2008. Supplemental Assessment of the Groundwater Protection Program, Y-12 National Security Complex, Oak Ridge, Tennessee. Prepared by Elvado Environmental LLC and GSI Environmental, Inc. (Y/SUB08-63119/2).
- BWXT Y-12, L.L.C. 2002a. *Pressure Profiling of Wells Equipped with Westbay*™ *Monitoring System Instrumentation*. BWXT Y-12, L.L.C. Management Requirement prepared by the Environment, Safety, and Health Organization (Y50-71-019, Rev.1).
- BWXT Y-12, L.L.C. 2002b. *Liquid Grab Sampling*. BWXT Y-12, L.L.C. Management Requirement prepared by the Environment, Safety, and Health Organization (Y50-71-005, Rev. 1.1).
- BWXT Y-12, L.L.C. 2004. *Measurement of Static Water Level Elevation*. BWXT Y-12, L.L.C. Management Requirement prepared by the Environment, Safety, and Health Organization (Y50-71-015, Rev 1.0).
- BWXT Y-12, L.L.C. 2005. Assessment of the Groundwater Protection Program, Y-12 National Security Complex, Oak Ridge, Tennessee. Prepared by Groundwater Services, Inc. (Y/TS-1984).
- BWXT Y-12, L.L.C. 2006a. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee. Prepared by Elvado Environmental LLC (Y/TS-2031).
- BWXT Y-12, L.L.C. 2006b. *Groundwater Sampling of Westbay*TM *Monitoring System Instrumented Wells*. BWXT Y-12, L.L.C. Management Requirement prepared by the Environment, Safety, and Health Organization (Y50-71-018, Rev.2).
- BWXT Y-12, L.L.C. 2007a. Calendar Year 2006 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee. Prepared by Elvado Environmental LLC (Y/SUB/07-054638/1).
- BWXT Y-12, L.L.C. 2007b. *Groundwater Sampling*. BWXT Y-12, L.L.C. Management Requirement prepared by the Environment, Safety, and Health Organization (Y50-71-016, Rev 2.0).
- BWXT Y-12, L.L.C. 2007c. *Field Quality Control Samples*. BWXT Y-12, L.L.C. Management Requirement prepared by the Environment, Safety, and Health Organization (Y71-66-EC-003, Rev 2.0).
- U.S. Environmental Protection Agency. 1983. Methods for Chemical Analysis of Water and Wastes.
- U.S. Environmental Protection Agency. 1996. Test Methods for Evaluating Solid Waste Physical/Chemical Methods.

APPENDIX A FIGURES

GWPP Fig1 09/23/08

Fig. A.1. Hydrogeologic regimes at the Y-12 National Security Complex.

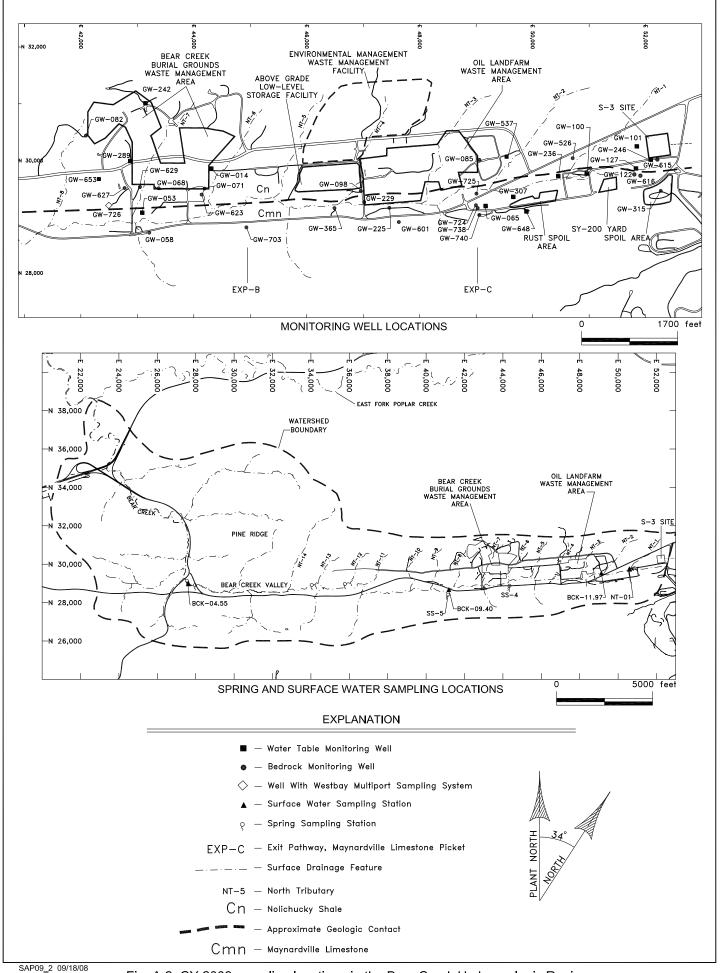
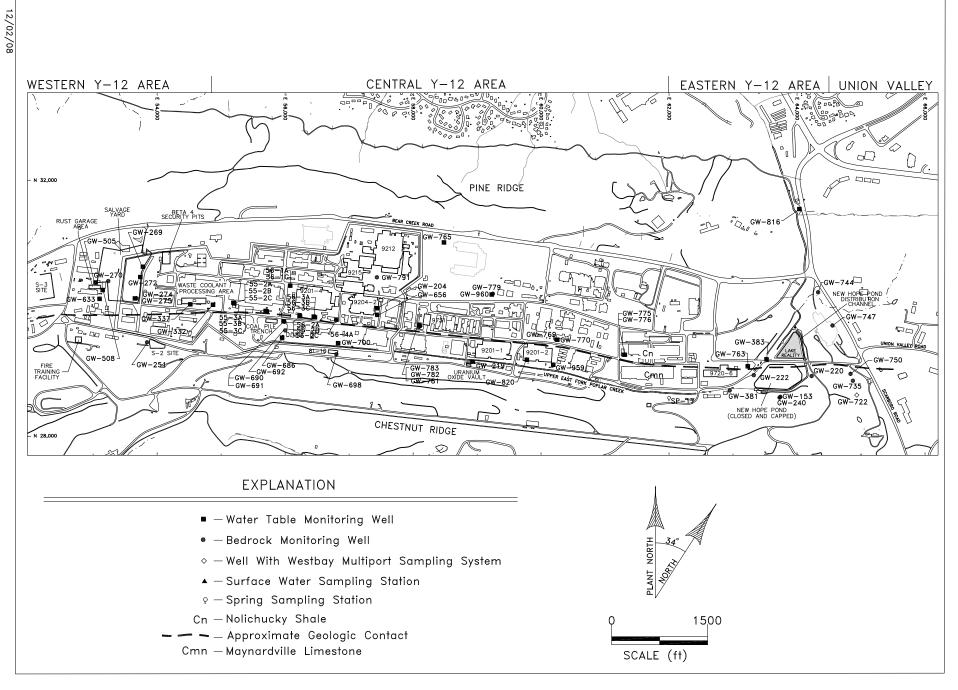
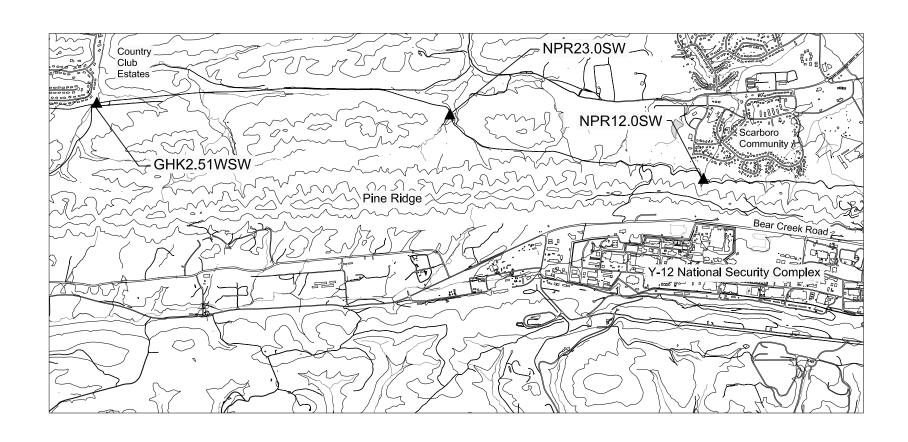
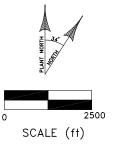




Fig. A.2. CY 2009 sampling locations in the Bear Creek Hydrogeologic Regime.

SAP09_3


09/24/08

Surface Water Sampling Location

APPENDIX B

TABLES

Table B.1 Sampling locations, frequency, and analytical parameters for groundwater and surface water monitoring during CY 2009

Sampling	T 2	Collection	Tag	Sample	es Collec	ted in CY	Y 2009 ⁵	D 4 6
Point 1	Location ²	Method ³	Depth 4	Q1	Q2	Q3	Q4	Parameters ⁶
Bear Creek Hydrog	geologic Regim	e						
GW-014	BG	LFLO	14.50	Y				VOC(1)
GW-053	BG	PDB	35.13	D		•		VOC-PDB
GW-058	BG	LFLO	48.90	Y		ë !		STD
GW-065	OLF	NP	36.89	Y		Y		STD
GW-068	BG	LFLO	86.10	Y		e		STD
GW-071	BG	LFLO	218.40	Y		Y		MET-PMS, VOC(1)
GW-082	BG	LFLO	38.45			Y		VOC(1)
GW-085	OLF	LFLO	62.34	D				Anions, RAD(1,12)
GW-098	OLF	PDB	105.65	Y		·		VOC-PDB
GW-100	S3	LFLO	17.87	Y				STD
GW-101	S 3	LFLO	19.18	Y	} 	·		STD
GW-122	S3	LFLO	19.18 145.28	Y		- -		STD
GW-127	S3	LFLO	26.52	Y				STD
GW-225	OLF	LFLO	203.30	Y				Anions, VOC(1)
GW-229	OLF	LFLO	51.45	Y				STD
GW-236	S 3	LFLO	21.14	Y				STD
GW-242	BG	LFLO	20.18	Y				STD
GW-246	S 3	LFLO	76.50			Y		STD
GW-289	BG	PDB	43.14			D		VOC-PDB
GW-307	RS	LFLO	43.60	D		-		STD
GW-315	SPI	PDB	105.98	Y		-		VOC-PDB
GW-365	OLF	PDB	152.49	Y				VOC-PDB
GW-526	S3	LFLO	123.80	Y				Anions, RAD(1,12)
GW-537	OLF	LFLO	27.35			Y		Anions, RAD(1,12)
GW-601	OLF	LFLO	358.61	Y				Anions, VOC(1)
GW-615	S3	LFLO	246.84	Y				STD
GW-616	S3	LFLO	270.59			Y		Anions
FB-GW-623	BG		٠	Y				VOC(1)
GW-623	BG	NP	277.93	Y				STD
GW-627	BG	PDB	270.96	Y		Y		VOC-PDB
GW-629	BG	PDB	314.59	Y		Y		VOC-PDB
GW-648	RS	LFLO	82.47	D		Y		STD
GW-653	BG	PDB	41.53	Y				VOC-PDB
GW-703	EXP-B	LFLO	185.29	Y				STD
GW-724	EXP-C	LFLO	293.60	Y				Anions, VOC(1)
GW-725	EXP-C	LFLO	145.42	Y				STD
GW-726-02	BG	WBAY	581.00		Y			STD
GW-726-04	BG	WBAY	546.00		Y			STD
GW-726-06	BG	WBAY	511.00		Y			STD
GW-726-09	BG	WBAY	441.00		Y		[STD
GW-726-12	BG	WBAY	376.00		Y		[STD
GW-726-16	BG	WBAY	291.00		Y		[STD
GW-726-20	BG	WBAY	200.00		Y			STD
ER-GW-722-23	BG	•	•		Y			VOC(1)
GW-726-23	BG	WBAY	130.00		Y			STD
GW-738	EXP-C	LFLO	91.78	Y				STD
GW-740	EXP-C	PDB	192.67	Y				VOC-PDB

Table B.1 (continued)

Sampling	Location ²	Collection	Tag	Sample	es Collec	ted in CY	Y 2009 ⁵	Parameters ⁶
Point 1	Location	Method ³	Depth ⁴	Q1	Q2	Q3	Q4	Parameters
Bear Creek Hydro	geologic Regim	e (continued)						
BCK-04.55	EXP-SW	GRAB				Y		STD
BCK-09.40	EXP-SW	GRAB		1		D		STD
BCK-11.97	EXP-SW	GRAB		1		Y	•	STD
NT-01	EXP-SW	GRAB				Y		STD
SS-4	EXP-SW	GRAB			}	Y	• :	STD
SS-5	EXP-SW	GRAB	•			Y	 !	STD
Chestnut Ridge Hy	drogeologic Re	gime						
GW-174	CRSP	PDB	151.94				Y	VOC-PDB
GW-175	CRSP	PDB	169.49			Č	Y	VOC-PDB
GW-176	CRSP	PDB	147.33	1		·	D	VOC-PDB
GW-180	CRSP	PDB	146.08		}		Y	VOC-PDB
GW-322	CRSP	PDB	191.99				Y	VOC-PDB
S17	EXP-SW	GRAB				ē	Y	STD
SCR1.5SW	EXP-SW	GRAB	······································	1		<u> </u>	Y	STD
SCR2.1SP	EXP-SW	GRAB		1			Y	STD
SCR2.2SP	EXP-SW	GRAB		1		 !	Y	STD
SCR3.5SW	EXP-SW	GRAB	······································	1			Y	STD
Upper East Fork P			egime					
55-2A	GRIDB3	LFLO	13.98	·		č	Y	Anions, VOC(1)
55-2B	GRIDB3	LFLO	27.69	†		 !	Y	STD
55-2C	GRIDB3	LFLO	76.00	†			Y	Anions, VOC(1)
55-3A	B9201-5	LFLO	14.25	······	Y	 !	Y	STD
55-3B	B9201-5	LFLO	37.98	······	Y		Y	STD
55-3C	B9201-5	LFLO	77.43	······	Y	 !	Y	STD
56-1A	Y12	LFLO	18.95	······		Y		STD
56-1C	Y12	LFLO	73.45	†		D		STD
56-2A	GRIDC3	LFLO	15.03	1		Y		STD
56-2B	GRIDC3	LFLO	38.63	······		Y		STD
56-2C	GRIDC3	PDB	77.03	······		Y	<u></u>	VOC-PDB
56-3A	Y12	LFLO	17.92	······		Y	 !	STD
56-3B	Y12	LFLO	30.85	······		Y		STD
FB-56-3C	Y12					Y		VOC(1)
56-3C	Y12	LFLO	55.35	1		Y		STD
56-4A	Y12	NP	12.60		Y	<u>.</u>		STD
GW-153	NHP	PDB	60.84	······			D	VOC-PDB
GW-204	T0134	LFLO	20.23	······	Y	<u></u>		MET-PMS, RAD(1,3)
GW-219	UOV	LFLO	15.59	······	Y		å !	MET-PMS, RAD(1,3)
GW-220	NHP	PDB	49.00		Y Y	<u>:</u>	Y	VOC-PDB
GW-222	NHP	LFLO	28 55	 	D			STD
GW-240	NHP	PDB	28.55 32.55	1			Y	VOC-PDB
GW-251	S2	LFLO	50.04	·	Y			STD
GW-269	SY	PDB	50.04 33.50	1	Ý			VOC-PDB
GW-270	SY	LFLO	21.50	 	Ý	÷		STD
	SY	LFLO	19.16	†	Y			STD
GW-272 GW-274	SY	LFLO	36.12	†	D			STD
GW-275	SY	LFLO	68.47	†	Y	ë :	 	STD
G 11 - 213	91	LiLO	00.77	<u> </u>	: 1	:	:	510

Table B.1 (continued)

Sampling	Location ²	Collection	Tag	Sampl	es Collec	ted in CY	Y 2009 ⁵	Down	
Point 1	Location	Method ³	Depth ⁴	Q1	Q2	Q3	Q4	Parameters ⁶	
pper East Fork Po	plar Creek Hy	drogeologic R	egime (con	tinued)					
GW-332	WC	PDB	27.07		Y			VOC-PDB	
GW-337	WC	PDB	25.33		Y			VOC-PDB	
GW-381	NHP	LFLO	61.01			ē	Y	VOC(1)	
GW-383	NHP	PDB	26.54			<u></u>	Y	VOC-PDB	
	RG	LFLO			Ъ	 :			
GW-505			16.80 15.11		ע	<u>:</u>	: :	MET-PMS, RAD(1) VOC-PDB	
GW-508	RG	PDB			Y	······			
GW-633	RG	LFLO	15.15		Y	: •	÷	STD	
GW-656	T0134	PDB	20.60 16.23		Y	÷		VOC-PDB	
GW-686	CPT	LFLO			Y			Anions, HG, VOC(1)	
GW-690	CPT	LFLO	53.25		Y	<u>:</u>	<u> </u>	Anions, HG, VOC(1)	
GW-691	CPT	LFLO	20.39		Y		D	Anions, HG, VOC(1)	
GW-692	CPT	LFLO	53.05		Y	P		Anions, HG, VOC(1)	
GW-698	B8110	LFLO	74.88		D		Y	Anions, HG, VOC(1)	
GW-700	B8110	PDB	33.19			Y		VOC-PDB	
GW-722-14	EXP-J		425.00			4		STD	
	EXP-J	WBAY WBAY	385.00			Y Y		STD	
GW-722-17		WDAI	363.00			٠			
ER-GW-722-17	EXP-J					Y		VOC(1)	
GW-722-20	EXP-J	WBAY	333.00		ļ	Y		STD	
GW-722-22	EXP-J	WBAY	313.00		<u></u>	Y		STD	
GW-722-33	EXP-J	WBAY	87.00			Y		STD	
GW-735	EXP-J	LFLO	81.81			Y		STD	
GW-744	GRIDK1	LFLO	69.28			Y		STD	
GW-747	GRIDK2	LFLO	82.33			Y		STD	
GW-750	EXP-J	LFLO	75.49		Y			STD	
GW-763	GRIDJ3	LFLO	20.41				Y	VOC(1)	
GW-765	GRIDE1	LFLO	35.05		Y	 !		STD	
	GRIDG3	PDB	62.72		Y	: 	v	VOC-PDB	
GW-769			62.73		I	: 	Y Y		
GW-770	GRIDG3	PDB	21.68		<u>.</u>	<u> </u>	Υ	VOC-PDB	
GW-775	GRIDH3	PDB	55.98			Y	: :	VOC-PDB	
GW-776	GRIDH3	LFLO	21.92			Y		STD	
GW-779	GRIDF2	LFLO	65.35			Y		STD	
GW-781	GRIDE3	LFLO	71.07			Y		STD	
GW-782	GRIDE3	LFLO	38.23			Y		STD	
GW-783	GRIDE3	PDB	17.98			Y		VOC-PDB	
GW-791	GRIDD2	PDB	72.45			Y		VOC-PDB	
GW-816	EXP-SR	LFLO	17.99	 		Y	 !	STD	
GW-820	B9201-2	PDB	17.18	 	Y			VOC-PDB	
GW-959	B9201-2	LFLO	1/.10		Y	i	<u></u>	STD	
						: :			
GW-960	GRIDF2	LFLO			Y	<u></u>		STD	
SP17	EXP-SW	GRAB				D		STD	
GHK2.51WSW	EXP-SW	GRAB		Y		<u>.</u>		STD	
NPR12.0SW	EXP-SW	GRAB		Y		<u>.</u>		STD	
NPR23.0SW	EXP-SW	GRAB		Y]	STD	

Table B.1 (continued)

Notes:

1 BCK - Bear Creek Kilometer (surface water station)

ER - Equipment rinsate sample

FB - Field blank sample

GW - Groundwater monitoring well

GHK - Gum Hollow Kilometer (surface water station)

NPR - North of Pine Ridge (surface water station)

NT - North Tributary to Bear Creek (surface water station)

S17 - Surface water station in SCR5

SCR - South Chestnut Ridge (spring or surface water station)

SP17 - Spring sampling location: Eastern Y-12 Area

SS - Spring sampling location: South Side of Bear Creek

2 B8110 - Building 81-10

B9201-2 - Building 9201-2

B9201-5 - Building 9201-5

BG - Bear Creek Burial Grounds Waste Management Area

CPT - Coal Pile Trench

CRSP - Chestnut Ridge Security Pits

EXP-B - Exit Pathway Picket B

EXP-C - Exit Pathway Picket C

EXP-J - Maynardville Limestone Exit Pathway Picket J

EXP-NPR - Surface water sampling station located where drainage exits the

Oak Ridge Reservation, north of Pine Ridge

EXP-SR - Exit pathway well in the gap through Pine Ridge along Scarboro Road

EXP-SW - Spring or Surface Water Location

GRID - Comprehensive Groundwater Monitoring Plan Grid Location

NHP - New Hope Pond

OLF - Oil Landfarm Waste Management Area

RG - Rust Garage Area

RS - Rust Spoil Area

S2 - S-2 Site

S3 - S3 Site

SPI - Spoil Area I

SY - Y-12 Salvage Yard

T0134 - Underground Storage Tank 0134-U

UOV - Uranium Oxide Vault

WCPA - Waste Coolant Processing Area

Y12 - Y-12 Complex

3 Sample Collection Method

LFOW - Low-flow minimal purge

NP - No purge before sample collection; history of very low sampling rate (<50 ml/min)

PDB - Passive diffusion bag

GRAB - Surface water sample, grab sample

WBAY - Westbay multiport method

4 Tag Depth:

The distance measured (in ft) from the top of the well casing to the bottom of the well, as recorded during well inspections.

For wells GW-722 and GW-726, the depth (below the top of well casing) of the sampling port.

Table B.1 (continued)

Notes: (continued)

- 5 Details regarding the monitoring frequency for each location is provided in Appendix F. Groundwater Monitoring Schedules (Appendix C) provide the sequence for collecting samples during each quarterly sampling event and includes the waste stream identification for groundwater purged from each monitoring well. The Waste Management Plan for sampling activities is in Appendix G.
 - Y Sample collection will be performed during the CY 2009 quarter
 - D A field duplicate sample will collected in addition to the regular sample
- 6 Table B.2 provides a comprehensive list of analytes, analytical methods, and the associated parameter group.
 - STD Standard administrative parameter group, including all of the analytes in the following elementary parameter groups:
 - FLD Field measurements
 - CHEM Miscellaneous laboratory analytes (e.g., dissolved solids) and anions
 - MET(1) Metals
 - VOC(1) Volatile organic compounds
 - RAD(1) Gross alpha and gross beta activity

Selective Parameter Monitoring: (Field measurements will be obtained at all locations)

- Anions Chloride, Nitrate, and Sulfate
 - HG Mercury
- MET-ICP Metals by method SW846-6010B
- MET-PMS Metals by method SW846-6020
- VOC-PDB Volatile organic compounds reported for Passive Diffusion Bag samples;
 - a subset of the VOC(1) group
 - RAD(3) Uranium-234, -235, and -238
- RAD(12) Technetium-99

Table B.2 Field measurements and laboratory analytes that comprise the elementary parameter groups for CY 2009 groundwater and surface water samples

Para	meter	Measurement or	Analytical	Reporting	Units 4
Gre	oup 1	Analyte	Method ²	Limit ³	Units
FLD	•	Depth to Water	NA	NA	ft
		Water Temperature	NA	NA	centigrade
		pН	NA	NA	pH units
		Conductivity	NA	NA	μmho/cm
		Dissolved Oxygen	NA	NA	ppm
		Oxidation-Reduction Potential (REDOX)	NA	NA	mV
CHEM	TDS	Total Dissolved Solids	SM 2540C 18	1	mg/L
	TSS	Total Suspended Solids	SM 2540D 18	1	mg/L
	Alkalinity	Bicarbonate	SM 2540D 18 SM 2320B 18	1	mg/L
		Carbonate	SM 2320B 18	1	mg/L
	Anions	Chloride	SW846-9056	0.2	mg/L
		Nitrate (as Nitrogen)	EPA-353.2	0.05	mg/L
		Sulfate	SW846-9056	0.25	mg/L
	Fluoride	Fluoride	SM 4500F 18	0.1	mg/L
MET(1)	MET-ICP	Aluminum	SW846-6010B	0.2	mg/L
		Barium	SW846-6010B	0.004	mg/L
		Beryllium	SW846-6010B	0.0005	mg/L
		Boron	SW846-6010B	0.1	mg/L
		Calcium	SW846-6010B	0.2	mg/L
		Cobalt	SW846-6010B	0.02	mg/L
		Copper	SW846-6010B	0.02	mg/L
		Iron	SW846-6010B	0.05	mg/L
		Lithium	SW846-6010B	0.01	mg/L
		Magnesium	SW846-6010B	0.2	mg/L
		Manganese	SW846-6010B	0.005	mg/L
		Molybdenum	SW846-6010B	0.05	mg/L
		Potassium	SW846-6010B	2	mg/L
		Silver	SW846-6010B	0.02	mg/L
		Sodium	SW846-6010B	0.2	mg/L
		Strontium	SW846-6010B	0.005	mg/L
		Thorium	SW846-6010B	0.2	mg/L
		Vanadium	SW846-6010B	0.02	mg/L
		Zinc	SW846-6010B	0.05	mg/L
	MET-PMS	Antimony	SW846-6020	0.0025	mg/L
		Arsenic	SW846-6020	0.005	mg/L
		Cadmium	SW846-6020	0.0025	mg/L
		Chromium	SW846-6020	0.01	mg/L
		Lead	SW846-6020	0.0005	mg/L
		Nickel	SW846-6020	0.005	mg/L
		Selenium	SW846-6020	0.01	mg/L
		Thallium	SW846-6020	0.0005	mg/L
		Uranium	SW846-6020	0.0005	mg/L
TIOCAL	HG	Mercury	SW846-7470A	0.00005	mg/L
VOC(1)		Acetone	SW846-8260B-UP	10	μg/L
		Acrolein	SW846-8260B-UP	10	μg/L
	WOO PPE	Acrylonitrile	SW846-8260B-UP	5	μg/L
	VOC-PDB	Benzene	SW846-8260B-UP	5	μg/L
	1100 555	Bromochloromethane	SW846-8260B-UP	5	μg/L
	VOC-PDB	Bromodichloromethane	SW846-8260B-UP	5	μg/L

Table B.2 (continued)

Parameter	Measurement or	Analytical	Reporting	T T • 4
Group 1	Analyte	Method ²	Limit 3	Units ⁴
VOC(1) VOC-PDB	Bromoform	SW846-8260B-UP	5	μg/L
(continued)	Bromomethane	SW846-8260B-UP	5	μg/L
VOC-PDB	2-Butanone	SW846-8260B-UP	5	μg/L
	Carbon disulfide	SW846-8260B-UP	5	μg/L
VOC-PDB	Carbon tetrachloride	SW846-8260B-UP	5	μg/L
VOC-PDB	Chlorobenzene	SW846-8260B-UP	5	μg/L
VOC-PDB	Chloroethane	SW846-8260B-UP	5	μg/L
VOC-PDB	2-Chloroethylvinyl ether	SW846-8260B-UP	10	μg/L
VOC-PDB	Chloroform	SW846-8260B-UP	5	μg/L
VOC-PDB	Chloromethane	SW846-8260B-UP	5	μg/L
VOC-PDB	Dibromochloromethane	SW846-8260B-UP	5	μg/L μg/L
	1,2-Dibromo-3-chloropropane	SW846-8260B-UP	10	μg/L
	1,2-Dibromoethane	SW846-8260B-UP	5	μg/L
VOC-PDB	Dibromomethane	SW846-8260B-UP	5	μg/L
VOC-PDB	1,2-Dichlorobenzene	SW846-8260B-UP	5	μg/L
VOC-PDB	1,4-Dichlorobenzene	SW846-8260B-UP	5	μg/L
 -	1,4-Dichloro-2-butene	SW846-8260B-UP	5	μg/L
 	trans-1,4-Dichloro-2-butene	SW846-8260B-UP	5	μg/L
VOC-PDB	Dichlorodifluoromethane	SW846-8260B-UP	5	μg/L
VOC-PDB	1,1-Dichloroethane	SW846-8260B-UP	5	μg/L
VOC-PDB	1,2-Dichloroethane	SW846-8260B-UP	5	μg/L
VOC-PDB	1,1-Dichloroethene	SW846-8260B-UP	5	μg/L
VOC-PDB	cis-1,2-Dichloroethene	SW846-8260B-UP	5	μg/L
VOC-PDB	trans-1,2-Dichloroethene	SW846-8260B-UP	5	μg/L
VOC-PDB	1,2-Dichloropropane	SW846-8260B-UP	5	μg/L
VOC-PDB	cis-1,3-Dichloropropene	SW846-8260B-UP	5	μg/L
VOC-PDB	trans-1,3-Dichloropropene	SW846-8260B-UP	5	μg/L
	Ethanol	SW846-8260B-UP	200	ug/L ug/L ug/L ug/L
VOC-PDB	Ethylbenzene	SW846-8260B-UP SW846-8260B-UP	5	μg/L
 -	Ethyl methacrylate	SW846-8260B-UP	5	μg/L
-	2-Hexanone	SW846-8260B-UP	5	μg/L
-	Iodomethane	SW846-8260B-UP	<u>5</u>	μg/L
WOO DDD	4-Methyl-2-pentanone	SW846-8260B-UP	5	μg/L
VOC-PDB	Methylene chloride	SW846-8260B-UP	2	μg/L
	Styrene	SW846-8260B-UP	5	μg/L
WOO DDD	1,1,1,2-Tetrachloroethane	SW846-8260B-UP	5	μg/L
VOC-PDB	1,1,2,2-Tetrachloroethane	SW846-8260B-UP	5	μg/L
VOC-PDB	Tetrachloroethene	SW846-8260B-UP	5	μg/L
VOC-PDB	Toluene Total Yylana	SW846-8260B-UP	5 5	μg/L
VOC-PDB VOC-PDB	Total Xylene 1,1,1-Trichloroethane	SW846-8260B-UP SW846-8260B-UP	5 5	μg/L
VOC-PDB VOC-PDB	1,1,2-Trichloroethane	SW846-8260B-UP	5 5	μg/L μg/I
VOC-PDB VOC-PDB	Trichloroethene	SW846-8260B-UP		μg/L ug/I
VOC-PDB VOC-PDB	Trichlorofluoromethane	SW846-8260B-UP	5 5	μg/L μg/I
VOC-PDB VOC-PDB	1,2,3-Trichloropropane	SW846-8260B-UP	10	μg/L μσ/I
VOC-PDB VOC-PDB	1,1,2-Trichloro-1,2,2-trifluoroethane	SW846-8260B-UP	5	μg/L μg/L
, OC-1 DB	Vinvl acetate	SW846-8260B-UP	10	μg/L μg/L
VOC-PDB	Vinyl acetate Vinyl chloride		2	μg/L μg/L
RAD(1)		SW846-8260B-UP FPA-900.0	<u>2</u> 5	μg/L nCi/L
MID(I)	Gross Alpha Activity Gross Beta Activity	EPA-900.0 EPA-900.0	10	pCi/L pCi/L
RAD(3)	Gross Beta Activity Uranium-234 -235 & -238	EPA-900.0 Y50-AC-65-7061	0.4	pCi/L pCi/L
RAD(3)	Uranium-234, -235, & -238 Technetium-99	Y50-AC-65-7061 Y50-AC-65-7060	15	pCi/L pCi/L
1411/(14)	1 CCIIIICHUIII-97	130 AC-03-1000	1.5	PC1/L

Table B.2 (continued)

Notes:

1 Elementary Parameter Groups for the Standard Parameter Group and Selected Parameter Monitoring:

FLD - Field measurements

CHEM - Miscellaneous laboratory analytes (e.g., dissolved solids) and anions

Anions - Chloride, Nitrate, and Sulfate

MET(1) - Metals

HG - Mercury

MET-PMS - Metals by method SW846-6020

VOC(1) - Volatile organic compounds (54 compounds)

VOC-PDB - Volatile organic compounds reported for Passive Diffusion Bag samples (36 compounds)

RAD(1) - Gross alpha and gross beta activity

RAD(3) - Uranium-234, -235, and -238

RAD(12) - Technetium-99

2 Analytical Method:

NA - Not Applicable

Field measurements are performed in accordance with the following B&W Y-12 Management Requirements operating procedures:

Field Measurement	Procedure	Field Measurement	Procedure
Depth to Water	Y50-71-015	Dissolved Oxygen	Y50-71-032
Water Temperature	Y50-71-030, -014	REDOX	Y50-71-033
pН	Y50-71-031, -014	Pressure Profile	Y50-71-019
Conductivity	Y50-71-034, -022		

Analytical methods from:

- EPA Methods for Chemical Analysis of Water and Wastes (U.S. Environmental Protection Agency 1983)
- SM Standard Methods for the Evaluation of Water and Wastewater, 18th Edition (American Public Health Association 1992)
- SW846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods (U.S. Environmental Protection Agency 1996)
- B&W Y-12 ACO Procedures and laboratory test names applicable to the analytical methods shown above in the main table:

Method	ACO Procedure	ACO Lab Test
EPA-353.2	ASO-TP-7659	NO3-N
EPA-900.0	Y50-AC-65-7074	GROSSAP-ENV
SM 2320B 18	Y/P65-7639	ALKALINITY-I
SM 2540C 18	Y-50-AC-65-7914	SOLIDS-TOT-D
SM 2540D 18	Y/P65-7918	SOLIDS-TOT-S
SM 4500F 18	Y/P65-7602	FLUORIDE
SW846-6010B	Y50-AC-65-0040	ICP6010
SW846-6020	Y/P65-0034	ICPMSGW
SW846-7470A	Y50-AC-65-7470	HGLOWRL
SW846-8260B-UP	Y/P65-SW846-8260B	VOA8260GW
SW846-8260B-UP	Y/P65-SW846-8260B	VOAGW-PDB
SW846-9056	Y50-AC-65-7619	ANIONS
Y50-AC-65-7060	Y50-AC-65-7060	TC-99LS-ENV
Y50-AC-65-7061	Y50-AC-65-7061	ASPEC-U

Table B.2 (continued)

Notes: (continued)

3 Reporting Limits:

NA - not applicable

VOC(1) - Reporting limits are contract-required quantitation limits; also report estimated values (with qualifier) below this limit and above the method detection limit.

RAD(1,3,12) - Reporting limits are target minimum detectable activities (MDAs) that may be obtained under optimal analytical conditions; actual MDAs are sample-specific and may vary significantly from the target value.

4 Units:

mg/L - milligrams per liter

mV - millivolts

NTU - nephelometric turbidity units

ppm - parts per million pCi/L - picoCuries per liter

APPENDIX C

CY 2009 GROUNDWATER MONITORING SCHEDULES (Insert When Issued, Before Each Quarterly Sampling Event)

APPENDIX D

ADDENDA TO THE CY 2009 SAMPLING AND ANALYSIS PLAN (if issued)

APPENDIX E

LABORATORY REQUIREMENTS
(Bottle Lists, Holding Times, Turnaround Time,
Elevated Minimum Activity)

STD

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
Anions, Fluoride, Carbonate and Bicarbonate	ANIONS, FLUORIDE, ALKALINITY-I	None	1 - 250 mL polyethylene
Nitrate	NO3-N	H ₂ SO ₄ to pH < 2; 4 ^O +/-2 ^O	1 – 100 mL polyethylene
Total Suspended Solids	SOLIDS-TOT-S	None	1 - 250 mL polyethylene
Total Dissolved Solids	SOLIDS-TOT-D	None	1 - 250 mL polyethylene
Total Metals (ICP,ICP-MS, and Hg)	ICP6010, ICPMS6020-EXT, HGLOWRL	HNO ₃	1 – 500 mL polyethylene
Radiochemistry (UV)	GROSSAB-ENV	HNO ₃	1 – 1 L polyethylene
Volatiles	VOA8260GW	None	2 - 40 mL amber glass with Teflon lined septum lids
Trip Blank (VOA) (one per cooler)	VOA8260GW	None	1 - 40 mL amber glass with Teflon lined septum lid

STD: LIMS LAB TEST ID

CHEM ALKALINITY-I, ANIONS, NO3-N, FLUORIDE, SOLIDS-TOT-S, SOLIDS-TOT-D

MET(1) ICP6010, ICPMS6020-EXT and HGLOWRL

VOC(1) VOA8260GW RAD(1)GROSSAB-ENV

¹All samples chilled to 4°C +/- 2°C

STD-WESTBAY

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
Anions, Fluoride, Carbonate and Bicarbonate	ANIONS, FLUORIDE, ALKALINITY-I	None	1 - 250 mL polyethylene
Nitrate	NO3-N	H ₂ SO ₄ to pH < 2; 4 ^O +/-2 ^O	1 – 100 mL polyethylene
Total Suspended Solids	SOLIDS-TOT-S	None	1 - 250 mL polyethylene
Total Dissolved Solids	SOLIDS-TOT-D	None	1 - 250 mL polyethylene
Total Metals (ICP,ICP- MS, and Hg)	ICP6010, ICPMS6020-EXT, HGLOWRL	HNO ₃	1 - 250 mL polyethylene
Radiochemistry (UV)	GROSSAB-ENV	HNO₃	1 – 500 mL polyethylene
Volatiles	VOA8260GW	None	2 - 40 mL amber glass with Teflon lined septum lids
Trip Blank (VOA) (one per cooler)	VOA8260GW	None	1 - 40 mL amber glass with Teflon lined septum lid

STD: LIMS LAB TEST ID

CHEM ALKALINITY-I, ANIONS, NO3-N, FLUORIDE, SOLIDS-TOT-S, SOLIDS-TOT-D

MET(1) ICP6010, ICPMS6020-EXT and HGLOWRL

VOC(1) VOA8260GW RAD(1)GROSSAB-ENV

¹All samples chilled to 4°C +/- 2°C

Anions

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
Anions	ANIONS	None	1 - 250 mL polyethylene
Nitrate	NO3-N	H ₂ SO ₄ to pH < 2; 4 ^O +/-2 ^O	1 – 100 mL polyethylene

Parameter: LIMS LAB TEST ID

Anions ANIONS Nitrate NO3-N

¹All samples chilled to 4°C +/- 2°C

Anions, HG, VOC (1)

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
Anions	ANIONS	None	1 - 250 mL polyethylene
Nitrate	NO3-N	H ₂ SO ₄ to pH < 2; 4 ⁰ +/-2 ⁰	1 – 100 mL polyethylene
Mercury (Hg)	HGLOWRL	HNO3	1 - 250 mL polyethylene
Volatiles	VOA8260GW	None	2 - 40 mL amber glass with Teflon lined septum lids

Parameter: LIMS LAB TEST ID

Anions ANIONS VOC(1) VOA8260GW

¹All samples chilled to 4°C +/- 2°C

Anions, RAD (1,12)

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
Anions	ANIONS	None	1 - 250 mL polyethylene
Nitrate	NO3-N	H_2SO_4 to pH < 2; 4° +/- 2°	1 – 100 mL polyethylene
Gross Alpha/Beta and	GROSSAB-ENV	HNO ₃	1 – 1 L polyethylene
Tc-99	TC99LS-ENV		

Parameters: LIMS LAB TEST ID

Anions ANIONS Nitrate NO3-N

RAD(1) GROSSAB-ENV RAD(12) TC-99LS-ENV

¹All samples chilled to 4°C +/- 2°C

Anions, VOC (1)

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
Anions	ANIONS	None	1 - 250 mL polyethylene
Nitrate	NO3-N	H ₂ SO ₄ to pH < 2; 4 ^O +/-2 ^O	1 – 100 mL polyethylene
Volatiles	VOA8260GW	None	2 - 40 mL amber glass with Teflon lined septum lids

Parameter: LIMS LAB TEST ID

Anions ANIONS Nitrate NO3-N

VOC(1) VOA8260GW

¹All samples chilled to 4°C +/- 2°C

MET-PMS, RAD(1)

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
MET-PMS (ICP-MS)	ICPMS6020-EXT	HNO ₃	1 - 250 mL polyethylene
Radiochemistry (UV)	GROSSAB-ENV	HNO ₃	1 – 1 L polyethylene

Parameters: LIMS LAB TEST ID ICPMS6020-EXT

RAD(1)GROSSAB-ENV

¹All samples chilled to 4°C +/- 2°C

MET-PMS, RAD(1,3)

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
MET-PMS (ICP-MS)	ICPMS6020-EXT	HNO ₃	1 - 250 mL polyethylene
Radiochemistry (UV)	GROSSAB-ENV ASPECU-ENV	HNO ₃	1 – 1 L polyethylene

Parameters: LIMS LAB TEST ID
MET(1) ICPMS6020-EXT
RAD(1)GROSSAB-ENV
RAD(3)ASPECU-ENV

¹All samples chilled to 4°C +/- 2°C

MET-PMS, VOC(1)

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
MET-PMS (ICP-MS)	ICPMS6020-EXT	HNO ₃	1 - 250 mL polyethylene
Volatiles	VOA8260GW	None	2 - 40 mL amber glass with Teflon lined septum lids

Parameters:LIMS LAB TEST IDMET(1)ICPMS6020-EXTVOC(1)VOA8260GW

¹All samples chilled to 4°C +/- 2°C

VOC (1)

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
Volatiles	VOA8260GW	None	2 - 40 mL amber glass with Teflon lined septum lids

Parameter: LIMS LAB TEST ID

VOC(1) VOA8260GW

¹All samples chilled to 4°C +/- 2°C

VOC-PDB

Parameter	Lab Tests	Chemical Preservative ¹	Bottle Types/Size
Volatiles	VOA8260GW	None	2 - 40 mL amber glass with Teflon lined septum lids

Parameter: LIMS LAB TEST ID

VOC-PDB VOAGW-PDB

¹All samples chilled to 4°C +/- 2°C

ESTABLISHED HOLDING TIMES

Parameter	Holding Times
Alkalinity (Carbonate, Bicarbonate)	14 days
Anions (Chloride, Nitrate, and Sulfate)	28 days
Fluoride	28 days
Mercury	28 days
Metals (ICP, ICPMS)	6 months
Radiochemistry (except tritium)	6 months
Solids, Total Dissolved	7 days
Solids, Total Suspended	7 days
Tritium	No EPA guidance
VOA	7 days

ESTABLISHED TURNAROUND TIMES

The Groundwater Protection Program and the Analytical Chemistry Organization (ACO) laboratory have agreed upon a turnaround time, such that the analytical data generated from each sampling location will be completed within 35 days of receipt. Every two weeks, data that has been approved since the previous two-week period will be transmitted in the form of hard copy of the approved lab reports for each location, along with an electronic copy in a standardized and compatible format (please see the most recent version of the Y-12 Plant Groundwater Protection Program Data Management Plan).

ELEVATED MINIMUM DETECTABLE ACTIVITY

Groundwater samples with high TDS (>1,000 mg/L) typically have elevated minimum detectable activities (MDAs) for gross alpha (> 15 pCi/L) and gross beta (> 50 pCi/L). However, the MDAs for specific isotopic analyses are unaffected by the sample solid content. For samples with gross activity results that are less than an elevated MDA, and specific isotopic analyses have not been requested, the laboratory will issue a request to analyze for the principal alpha- or beta-emitting isotopes. That is, if the gross alpha MDA exceeds 15 pCi/L and the result is less than 15 pCi/L, then the laboratory will request analyses of isotopic uranium (by method Y/P65-7061). Similarly, if a sample has an elevated gross beta MDA (>50 pCi/L) and the result is less than the MDA, then the laboratory would request analysis of technetium-99 activity. These requests will be approved by the Y-12 Groundwater Protection Program manager, or designee, before analyses are performed.

APPENDIX F SAMPLING FREQUENCY FOR MONITORING WELLS DURING CY 2009

Appendix F. Sampling Frequencies for Monitoring Wells during CY 2009

		Sampling Frequency ²					
Well	Regime ¹	MAROS	GWPP	MAROS	GWPP		
		Baseline	MOP	Supplement	CY 2009		
55-2A	EF	-	Semiannual	Biennial	Odd		
55-2B	EF	Semiannual	Semiannual	Annual	Annual		
55-2C	EF	Annual	Annual	Annual	Annual		
55-3A	EF	-	Semiannual	Semiannual	Semiannual		
55-3B	EF	-	Semiannual	Semiannual	Semiannual		
55-3C	EF	-	Semiannual	Semiannual	Semiannual		
56-1A	EF	-	Semiannual	Annual	Annual		
56-1C	EF	-	TBD	-	Annual		
56-2A	EF	Review	Annual	Annual	Annual		
56-2B	EF	Review	Annual	Annual	Annual		
56-2C	EF	Annual	Annual	Annual	Annual		
56-3A	EF	-	Semiannual	Annual	Annual		
56-3B	EF	-	Semiannual	Annual	Annual		
56-3C	EF	-	Semiannual	Annual	Annual		
56-4A	EF	-	Semiannual	Annual	Annual		
GW-014	BC	Semiannual	Semiannual	Semiannual	Annual		
GW-053	ВС	Biennial	Odd	Biennial	Odd		
GW-058	ВС	Review	Odd	Biennial	Odd		
GW-065	ВС	-	TBD	-	Semiannual		
GW-068	ВС	Review	Even	Semiannual	Annual		
GW-071	ВС	Semiannual	Semiannual	Semiannual	Semiannual		
GW-082	ВС	Semiannual	Annual	Annual	Annual		
GW-085	ВС	Semiannual	Semiannual	Annual	Annual		
GW-098	BC	Annual	Annual	Annual	Annual		
GW-100	BC	Annual	Odd	Annual	Annual		
GW-101	BC	Annual	Odd	Annual	Annual		
GW-122	BC	Review	Annual	Eliminate	Odd		
GW-127	BC	Annual	Odd	Eliminate	Odd		
GW-153	EF	Annual	Annual	Regulated	Annual		
GW-174	CR	Review	Odd	Biennial	Odd		
GW-175	CR	Annual	Even	Biennial	Odd		
GW-176	CR	Review	Odd	Biennial	Odd		
GW-180	CR	Review	Odd	Biennial	Odd		
GW-204	<u>EF</u>	Biennial	Annual	Biennial	Annual		
GW-219	<u>EF</u>	-	Odd	REG?	Odd		
GW-220	EF EF	- Annual	Semiannual	Regulated	Semiannual		
GW-222		Annual	TBD	Annual	2009		
GW-225 GW-229	BC BC	Semiannual	Semiannual Annual	Semiannual	Annual		
GW-236	BC	Annual Annual	Odd	Annual	Annual Odd		
GW-240	EF			Eliminate			
GW-242	BC	Annual Review	Annual TBD	Annual Annual	Annual Annual		
GW-246	BC	Semiannual	Semiannual	Annual	Odd		
GW-251	EF	Annual	Annual	Annual	Annual		
GW-269	EF	Review	Semiannual	Every 5 years	Annual		
GW-270	EF	Review	Odd	Eliminate	Odd		
GW-270	EF	Review	Odd	Annual	Odd		
GW-274	EF	Annual	Annual	Annual	Annual		
GW-275	EF	Annual	Annual	Annual	Annual		
GW-289	BC	Semiannual	Annual	Annual	Annual		
GW-307	BC	Review	Odd	Annual	Annual		
GW-315	BC	Annual	Annual	Annual	Annual		
O 4 4 - 3 1 3	CR	Review	Even	Annual	Annual		

Appendix F. Sampling Frequencies for Monitoring Wells during CY 2009

		Sampling Frequency ²				
Well	Regime ¹	MAROS				
		Baseline	MOP	Supplement	GWPP CY 2009	
GW-332	EF	Annual	Annual	Annual	Annual	
GW-337	EF	Annual	Annual	Annual	Annual	
GW-365	BC	Review	Even	Annual	Annual	
GW-381	EF	-	Annual	Regulated	Annual	
GW-383	EF	-	Semiannual	Regulated	Annual	
GW-505	EF	Review	Odd	Biennial	Odd	
GW-508	EF	-	TBD	Every 5 years	Odd	
GW-526	BC	-	TBD	Annual	Annual	
GW-537	BC	Annual	Annual	Annual	Annual	
GW-601	BC	Review	Odd	Semiannual	Annual	
GW-615	BC	Semiannual	Annual	Eliminate	Annual	
GW-616	BC	Annual	Annual	Annual	Annual	
GW-623	BC	Review	TBD	Semiannual	Annual	
GW-627	BC	Semiannual	Semiannual	Semiannual	Semiannual	
GW-629	BC	Biennial	Even	Semiannual	Semiannual	
GW-633	EF	Biennial	Even	Annual	Annual	
GW-648	BC	Remove	TBD	Eliminate	Semiannual	
GW-653	BC	Annual	Annual	Semiannual	Annual	
GW-656	EF	Annual	Annual	Biennial	Annual	
GW-686	EF	Review	Semiannual	Annual	Annual	
GW-690	EF	Annual	Annual	Annual	Annual	
GW-691	EF	Annual	Annual	Semiannual	Semiannual	
GW-692	EF	Remove	Annual	Annual	Annual	
GW-698	EF	Semiannual	Semiannual	Semiannual	Semiannual	
GW-700	EF	Annual	Annual	Annual	Annual	
GW-703	BC	Annual	Annual	Annual	Annual	
GW-722-14	EF	Ailiuai	Annual	Allilual	Annual	
GW-722-14	EF	_	Annual	_	Annual	
GW-722-17	EF		Annual	-	Annual	
GW-722-20	EF	_	Annual	-	Annual	
GW-722-33	EF	_	Annual	_	Annual	
GW-722-33	BC	Annual	Annual	Annual	Annual	
GW-725	BC	Annual	Annual	Annual	Annual	
GW-726-02	BC	- Ailiuai	TBD	- Allitual	2009	
GW-726-04	BC	_	TBD	_	2009	
GW-726-04	BC		TBD	-	2009	
GW-726-09	BC	_	TBD	_	2009	
GW-726-12	BC	_	TBD	_	2009	
GW-726-16	BC	_	TBD	-	2009	
GW-726-20	BC	_	TBD	-	2009	
GW-726-23	BC	_	TBD	_	2009	
GW-735	EF	Biennial	Odd	Annual	Odd	
GW-738	BC	Annual	Annual	Annual	Annual	
GW-740	BC	Annual	Annual	Annual	Annual	
GW-744	EF EF	-	Annual	Regulated	Annual	
GW-747	EF	_	Annual	Regulated	Annual	
GW-750	EF	Biennial	Odd	Biennial	Odd	
GW-763	EF	Annual	Annual	Annual	Annual	
GW-765	EF	Biennial	Odd	Biennial	Odd	
GW-769	EF	Semiannual	Semiannual	Semiannual	Semiannual	
GW-709	EF	Semiannual	Semiannual	Semiannual	Annual	
GW-775	EF	Biennial	Odd	Biennial	Odd	
GW-776	EF	Biennial	Odd	Biennial	Odd	
	LI	וווסוט	Ouu	ווווסום	Ouu	

Appendix F. Sampling Frequencies for Monitoring Wells during CY 2009

		Sampling Frequency ²					
Well	Regime ¹	MAROS Baseline	GWPP MOP	MAROS Supplement	GWPP CY 2009		
GW-781	EF	Annual	Annual	Annual	Annual		
GW-782	EF	Annual	Annual	Annual	Annual		
GW-783	EF	Annual	Annual	Annual	Annual		
GW-791	EF	Annual	Annual	Annual	Annual		
GW-816	EF	-	Annual	Regulated	Annual		
GW-820	EF	Semiannual	Semiannual	Annual	Annual		
GW-959	EF	-	Annual	Annual	Odd		
GW-960	EF	-	TBD	Annual	Odd		

Appendix F. Sampling Frequencies for Monitoring Wells during CY 2009

Notes:

1. Regime

BC = Bear Creek Hydrogeologic Regime

CR = Chestnut Ridge Hydrogeologic Regime

EF = Upper East Fork Poplar Creek Hydrogeologic Regime

2. Sampling frequency

MAROS Baseline = recommendation in the initial assessment of the Y-12 Groundwater Protection Program using the Monitoring and Remediation Optimization System (MAROS) (BWXT 2005)

GWPP MOP = as specified in the Y-12 Groundwater Protection Program Monitoring Optimization Plan (BWXT 2006a)

MAROS Supplement = recommendation in the supplemental MAROS assessment of the Y-12 Groundwater Protection Program (Babcock & Wilcox Technical Services Y-12, LLC 2008)

GWPP CY 2009 = the updated sampling frequency for use beginning in CY 2009

Semiannual = Sample collection twice per year

Annual = Sample collection once per year

Odd = Sample collection every other year, starting in 2009

2009 = Sample collection in 2009, every five years thereafter

"-" = Omitted from the MAROS assessment; lack of data or multiple vertical sampling points

Even = Sample collection every other year, starting in 2006

Regulated = Location is listed in a permit or decision document, but is not currently monitored by another program

Review = Sample collection every other year, starting in 2009

TBD = To be determined

Note: GWPP CY 2009 sampling frequency is shaded if differs from the MAROS Supplement recommendation. Final frequency reflects additional review of the MAROS supplement assessment.

APPENDIX G MANAGEMENT OF PURGED GROUNDWATER

APPENDIX G.1 WASTE MANAGEMENT PLAN

WASTE MANAGEMENT PLAN for

Waste Streams generated from Y-12 Groundwater Protection Program Sampling Activities

Date Issued - 12/18/06

prepared by:

Y-12 Groundwater Protection Program Environmental Compliance Department Y-12 National Security Complex P.O. Box 2009 Oak Ridge, TN 37831

managed by:

BWXT Y-12, LLC

for the:

U.S. Department of Energy Under Contract Number:

DE-AC05-00OR22800

This document has been reviewed by a Y-12 DC/UCNI RO and has been determined to be UNCLASSIFIED and contains no UCNI. This review does not constitute clearance for Public Release.

Name:	L. W. McMahon [signature on file]
Dotos	12/19/06

Approvals

Don Bohrman [signature on file]	12/18/06
Don Bohrman	Date
BWXT Y-12, LLC	
Environmental Officer	
Mary Wiginton [signature on file]	12/18/06
Mary Wiginton	Date
BWXT Y-12, LLC	
Waste Engineer	
Tom Conrad for D. McCune [signature on file]	12/18/06
Dave McCune	Date
Bechtel Jacobs, LLC	
Waste Treatment Operations	
•	
Mark Burris [signature on file]	12/18/06
Brad E Skaggs or Mark S. Burris	Date
BWXT Y-12, LLC	
Environmental Compliance	

Waste stream	Characterization ³	Segregation Requirements	Packaging	Disposal Path
Purge water ² that is not	Non-hazardous, non-radiological	Not contained	Not contained	ACO technicians will
contained	contaminated waters. Analytical results			dispense/dispose of waters directly
	indicate constituents in the water are less			to ground surface at the well
	than Safe Drinking Water Act Maximum			location.
	Contaminant Levels (MCL). In			
	addition, historical knowledge of			
	relevant groundwater plumes at the Y-12			
	National Security Complex confirm the			
	non-detection of contaminants, or the			
	detection of contaminants (J values), but			
	still below the MCL. See the most			
	current GWPP Groundwater Monitoring			
	Data Compendium			

Waste Management Plan for Y-12 Groundwater Protection Program Sampling Activities

Characterization ³	Segregation Requirements	Packaging	Disposal Path
Non-hazardous, contaminated waste	Segregate non-regulated waste	Place in a DOT approved	SID 2212 waste stream meets the
•	waters from other GWPP	container.	waste acceptance criteria of Master
			Profile WW-01. Sampling data is
	`		used to complete Attachment G of
	2214 and 2216).	l *	UCN 2109. If Uranium is present,
		1 0	above detection levels, then a wt
			%U235 sample is required to
		1	determine enrichment, and a
. ,	*	Profile w w-01	duplicate sample is required if results are >0.93 wt U235. All
	1	Label containers in	other constituents listed in WW-01
	1 0		have been quantified through
	1 Iuli.		current analytical results, previous
	Waters can be combined and		analyses, historical data (prior to
			1996), and groundwater plume
radioisotopes present consist of Tc-99	approved container.		composition. A Process Knowledge
and daughter products of Uranium.			form attached to each UCN 2109
			documents the presence of
Although not regulated, this waste water			constituents seen in SID 2212
			waters and the absence of other such
1			constituents. This waste stream is
			disposed at Y-12 National Security
			Complex's onsite treatment facility
			with authorization from Waste
			Treatment Operations. Depending
1 1 0			on enrichment content, normal
			disposal would be at either the West
			End Treatment Facility (WETF) or the Central Pollution Control
of this classification.			Facility (CPCF).
	Non-hazardous, contaminated waste waters. Analytical results indicate concentration in the water exceed the MCL. These waters can contain nitrate concentration > 100 mg/L, Uranium >0.03 mg/L, and Uranium isotopes > 4% of DCG. Waters commonly contain the following typical halogenated compounds (not inclusive) that exceed the MCL, but are below RCRA TCLP levels, include: Tetrachloroethene, Trichloroethene, cis-1,2-Dichloroethene, Carbon Tetrachloride, 1,1-Dichloroethane, Methylene Chloride, and Vinyl Chloride. Other radioisotopes present consist of Tc-99 and daughter products of Uranium.	Non-hazardous, contaminated waste waters. Analytical results indicate concentration in the water exceed the MCL. These waters can contain nitrate concentration > 100 mg/L, Uranium > 0.03 mg/L, and Uranium isotopes > 4% of DCG. Waters commonly contain the following typical halogenated compounds (not inclusive) that exceed the MCL, but are below RCRA TCLP levels, include: Tetrachloroethene, Carbon Tetrachloride, 1,1-Dichloroethene, cis-1,2-Dichloroethene, Carbon Tetrachloride. Other radioisotopes present consist of Tc-99 and daughter products of Uranium. Although not regulated, this waste water is contained, handled, and sent for disposal as a Best Management Practice (BMP) at Y-12. As a BMP, this contaminated purge water is not place on clean surfaces (soils) or near surface water tributaries. Annual groundwater data evaluation, multiple sampling event, and groundwater plume characteristics provide ample evidence	Non-hazardous, contaminated waste waters. Analytical results indicate concentration in the water exceed the MCL. These waters can contain nitrate concentration > 100 mg/L, Uranium > 0.03 mg/L, and Uranium isotopes > 4% of DCG. Waters commonly contain the following typical halogenated compounds (not inclusive) that exceed the MCL, but are below RCRA TCLP levels, include: Tetrachloroethene, Carbon Tetrachloride, 1,1-Dichloroethane, Methylene Chloride, and Vinyl Chloride. Other radioisotopes present consist of Tc-99 and daughter products of Uranium. Although not regulated, this waste water is contained, handled, and sent for disposal as a Best Management Practice (BMP) at Y-12. As a BMP, this contaminated purge water is not place on clean surfaces water tributaries. Annual groundwater data evaluation, multiple sampling event, and groundwater plume characteristics provide ample evidence Segregate non-regulated waste waters from other GWPP waster strot contain a RCRA hazardous waste (SID 2214 and 2216). Waste streams¹ have been characterized and established per well location and are published in GWPP's annual GWPP Sampling and Analysis Plan. Label containers in accordance with Y71-310, Waste Container Labeling Waters can be combined and bulk as necessary in a DOT approved container. Waters can be combined and bulk as necessary in a DOT approved container.

Waste stream	Characterization ³	Segregation Requirements	Packaging	Disposal Path
Waste stream SID¹ 2214 purge water² (purge water from multiple F-listed RCRA groundwater wells, along with rinse waters from sampling equipment and disposables, bulked into the same drum. All waste water carries the F039 waste code).	Characterization ³ Hazardous waste waters (no radiological contaminants). Characterization based upon well location. Wells located downgradient of the Bear Creek Burial Grounds between north tributary (NT) 6 and NT 8, and north of Bear Creek. Purge water most likely contains leachate from the BCBGs and is considered RCRA F-listed (40 CFR Part 261.31) based on established documentation (F039 leachate is comprised of F codes: F001, F002, F004, and F005).	Segregation Requirements Segregate RCRA F-listed waste waters from non-regulated waste waters (SID 2212) and RCRA Characteristic waste waters (SID 2216). Waste waters are bulked/accumulated at RCRA Satellite Accumulation Area (SAA) #SA-993, under the direction of the SAA Operator or Alternate Operator	Packaging Place in a DOT approved container. Waste is transported as DOT Class 9 under a Bill of Lading listing the assigned EPA waste code. Transporter has received DOT training. The above containers are compatible with the purge water and meet	Send SID 2214 waste waters to 90-Day Yard for further management. RCRA F-listed waste are prohibited under Master Profile WW-01, except under special arrangement with DOE, or approved by Waste Treatment Coordinator for waste that can be treated at CPCF or Groundwater Treatment Facility (GWTF). SID 2214 waste waters have been approved for treatment at GWTF with the following prohibitions: waters with Uranium above detection (based on waste
	Typical halogenated volatile organic compounds detected in the SID 2214 waters, which are above the MCL include: Tetrachloroethene, Trichloroethene, 1,2-Dichloroethene, 1,1-Dichloroethene, 1,1-Trichloroethane, 1,1- Dichloroethane, Methylene Chloride, and Vinyl Chloride. Typically Benzene and other total petroleum hydrocarbons have also been identified.		packaging requirements specified in Master Profile WW-01 Label containers in accordance with Y71-310, Waste Container Labeling	sample analyses) and Nitrates in concentration > 100 mg/L. All other constituents listed in WW-01 have been quantified through current analytical results, previous analyses, historical data (prior to 1996), and groundwater plume composition. A Process Knowledge form attached to each UCN 2109 documents the presence and absence of WW-01 constituents seen in SID 2214 waters. This waste stream is disposed at Y-12 National Security Complex's onsite treatment facility with authorization from Waste Treatment Operations.

Waste stream	Characterization ³	Segregation Requirements	Packaging	Disposal Path
SID ¹ 2216 purge water ²	Hazardous waste waters (mixed and	Segregate RCRA	Place in a DOT approved	Send SID 2216 waste waters to 90-
(purge water from	non-radiological contaminated).	characteristic waste waters	container.	Day Yard for further management.
multiple RCRA	Analytical results indicate that	from non-regulated waste		SID 2216 waste waters meet the
characteristic wells	concentrations exceed a RCRA Toxicity	waters (SID 2212) and RCRA		waste acceptance criteria of Master
bulked into the same	Contaminant Leaching Procedure (TCLP	F-listed waste waters (SID	Waste is transported as	Profile WW-01. Waters with
drum. The EPA waste	- 40 CFR Part 261.24). Annual	2216).	DOT Class 9 under a	Uranium above detection (based on
code is dependent on the	groundwater data evaluation, plume		Bill of Lading listing the	waste sample analyses) require a wt
well location).	evaluations, and repeated sampling	RCRA characteristic waste	assigned EPA waste	%U235 sample to determine
	events give weighted evidence to this	waters are bulked/accumulated	code. Transporter has	enrichment and a duplicate sample
	classification (wells may receive this	at RCRA Satellite	received DOT training.	is required if results are >0.93 wt
	classification if concentrations have	Accumulation Area (SAA)		U235. Nitrates concentration > 10
	been consistently approaching the	#SA-992, under the direction	The above containers are	mg/L must be indicated. All other
	RCRA TCLP levels).	of the SAA Operator or	compatible with the	constituents listed in WW-01 have
		Alternate Operator	purge water and meet	been quantified through current
	SID 2216 waste water can contain the		packaging requirements	analytical results, previous analyses,
	following EPA waste codes:		specified in Master	historical data (prior to 1996), and
	D005 – Barium		Profile WW-01	groundwater plume composition. A
	D006 - Cadmium			Process Knowledge form attached to
	D018 – Benzene		Label containers in	each UCN 2109 documents the
	D019 – Carbon Tetrachloride		accordance with Y71-	presence and absence of WW-01
	D029 – 1,1-Dichloroethene		310, Waste Container	constituents seen in SID 2216
	D039 – Tetrachloroethene		Labeling	waters. This waste stream is
	D040 – Trichloroethene			disposed at Y-12 National Security
	D043 – Vinyl Chloride			Complex's onsite treatment facility
				with authorization from Waste
	In addition to the above, these waters			Treatment Operations. Depending
	may contain the following volatile			on enrichment content, waste waters
	organic compounds: 1,2-Dichloroethene,			are disposed at the West End
	1,1,2-Trichloro-1,2,2-triflouroethane,			Treatment Facility (WETF) or the
	1,1,1-Trichloroethane, 1,1-			Central Pollution Control Facility
	Dichloroethane, Acetone, Methylene			(CPCF).
	Chloride, Chloroform and other total			
	petroleum hydrocarbons. These waters			
	may can contain trace metals, nitrate			
	concentration > 100 mg/L, Uranium			
	>0.03 mg/L, Uranium isotopes > 4% of			
	DCG, and other radioisotopes (Tc99 and			
	daughter products of Uranium).			

Waste stream	Characterization ³	Segregation Requirements	Packaging	Disposal Path
Disposables and sampling equipment in contact with RCRA characteristic or F-listed purge water: Sampling equipment: includes sample pumps, tubing, sample trays, and flow-through cells (all components). These items meet the definition of a "container" under RCRA. Non-absorbent disposables — include: gloves, plastic bags, and instrument probes Absorbent disposables — includes paper towels, wipes, clothes, litmus paper. During normal sampling operations these items should not come into contact with RCRA characteristic or F-listed waste waters.	Non-hazardous solid waste and RCRA empty containers. The sampling equipment and disposables which comes in contact with RCRA purge waters will not be subject to RCRA if: 1) The waste can be sufficiently removed from non-absorbent material (disposables), such as nitrile gloves, plastic surfaces, instrument probes, and external surfaces of sample bottles by rinsing such items. All rinse water must be collected and bulked under the appropriate RCRA waste stream (SID 2216 or 2214). 2) Sampling equipment that meets the definition of a "container" under RCRA and is not subject to regulation once the container is "empty" as defined under 40 CFR Part 261.7, paragraph (b). To meet this requirement all fluids must be sufficiently drained from the equipment, by normal means as possible, and then rinsed at least once to remove residue. All rinse water must be collected and bulked under the appropriate RCRA waste stream (SID 2216 or 2214). 3) Absorbent disposable such as wipes, paper towels, or clothes that are use to remove/clean/dry any addition liquids/residues RCRA empty containers, once the items are rinsed, are also not subject to RCRA. Litmus paper, if used for its intended purpose, and does not come into contact with FO39 waste water, is also not subject to RCRA.	Segregate non-regulated waste streams from those items subject to RCRA. all Sampling equipment: can be reused as necessary for the multiple sampling events and are not regulated. Non-absorbent disposables – once rinsed are not regulated. Absorbent disposables –. Items used to wipe/dry/clean RCRA empty containers are not regulated and can also be disposed of into sanitary trash (profile S-020). If these items do come into contact with RCRA waste water, the items are subject to regulation. These items must be wrung out as much as possible (water collected) and segregated from non-regulated items.	ALL non-regulated items – dispose of into the appropriate sanitary waste receptacle or dumpster, as specified under Master Profile S-020. Any items subject to RCRA regulation must be place in a DOT approved container and labeled in accordance with procedure Y71-310, Waste Container Labeling. Waste is transported as DOT Class 9 under a Bill of Lading, listing the assigned EPA waste code, to the 90-Day Yard for further management. Transporter has received DOT training.	All the items listed below require authorization from Y-12 Waste Management prior to disposal in Sanitary Trash Sampling equipment — once the item is no longer of use, or can no longer be used, the item can be disposed of in sanitary trash (Waste Profile No. S-020). Non-absorbent disposables — after items are rinsed, collect the rinse solution and bulk with SID 2216 or 2214 purge water, and then dispose of the item in sanitary trash (S-020). Absorbent disposables — not subject to regulation can be disposed into sanitary trash (S-020). Absorbent material that comes into contact with RCRA Characteristic (SID 2216) purge water, by process knowledge the whole material if tested under the TCLP would not exceed TCLP levels, and therefore the item can be disposed into sanitary trash (S-020). Absorbent material that comes into contact with RCRA F-listed waste waters (SID 2214) will be subject to regulation and must be send to the 90-Day Yard for further management (Master Profile HW-01). Final disposal path will be determined by Navarro-GEM to an off-site RCRA TSD.

Waste stream	Characterization ³	Segregation Requirements	Packaging	Disposal Path
All disposables and equipment used for GWPP purposes (non F-listed wells): Sampling pumps, gloves, wipes, tubing, litmus paper, instrument probes, sample trays, and flow-through cells.	Non-hazardous solid waste. Characterization is not required.	Segregate F-listed contaminated items from non F-listed contaminated items.	N/A	Items not in contact with any F-listed purge water can be disposed in sanitary trash (profile S020) with authorization from Y-12 Waste Management. All sampling equipment is to be reused till the item is no longer of use and then disposed of in sanitary trash. All Sanitary waste placed in the approved on-site Solid Waste Disposal Facility (Industrial Landfill)
Waters/Fluids generated during well development of existing wells (well development is performed on an as needed basis, prior to sampling, to maintain groundwater flow to well. Five to 10 well casing volumes are generated)	Well development of existing wells will utilize the most recent sampling analytical results and will follow the three waste streams (SIDs) for purge water.	Segregate water based on the three existing waste streams for purge water	Based on volume and waste stream ID number. Containers could consist of drums, polytanks, or tankers.	See the three purge water waste streams IDs above

¹ "SID" – "Stream Identification Number" are the pre-established waste streams identification (ID) for purge waters generated at Y-12. These waste streams were established by Y-12 Waste Operations, prior to 1995, and have been utilized to segregate waste waters. The waste stream ID is established for the coming Calendar Year (CY) for each well location to be monitored; based upon characterization of the most recent sampling results for that well location. These are published an appendix to GWPP's annual Sampling and Analysis Plan (published 2-3 months prior the start of the CY), and the waste stream is established for any other wells added during that CY and documented in addenda to this plan.

- $1. \quad ICP \ metals \ (SW846-EPA \ 6010B), \ ICPMS \ metals \ (EPA-200.8), \ Mercury \ (SW846-7470) includes \ Uranium \ metal \ (0.0005 \ mg/L)$
- 2. Anions Alkalinity, Chloride, Fluoride, Nitrates, Sulfates
- 3. Volatile Organic Compound SW846 EPA 8260B
- 4. Gross Alpha and Gross Beta (EPA-900.0)

The following radioisotopes have been analyzed for on an as needed basis: Tritium, Tc-99, Isotopic Uranium, Total Uranium and wt% U235, and other heavy radioisotopes (Am241, Np 237, I129, Thorium, Radium).

² "Purge Water" – unusable portion of groundwater purged from a well prior to sample collection. Water is in a liquid form,(99.9% liquid) with normally < 100 mg/L of suspended solids. Water contains contaminants that are in solution (dissolved phase) with little sediment load.

³ Analytical results (past and present) from sampling events are used to characterize purge water. The GWPP uses a standardized parameter list for every sample, which includes:

APPENDIX G

Y-12 GWPP PURGE WATER MANAGEMENT

Example of Waste Identification Tag (UCN 2114B) for SID 2212 purge water

510	2		
221			
0	WAS		
	IDENTIFI	CATIO	
TO 2109 NUMB	BE COMPLETED		UESTER
	UCN =	109#	
DISPOSAL	Start dat	- of	drum
LLW STAR		"	
MATERIAL	- IU/A		
DESCRIPT	ION Purgec	gro	unawalar
fro	m multip	ole w	ells
All	vater is i	nde	r waste
400	com SIX	221	2
TYPE AND	SIZE OF CONTAINED	- 1/	a polydon
steel drum)	:54la	, polydnu
OF MATE	RIAL 9108		
DEPART	EAAA 13	20/1	1-17 FCD
SIGNATU	RE SCOOLS	20/	/11
	SIGNA	ture	dete
TO BE	COMPLETED BY PLA	NT DISPOSA	AL COURDINATOR
CHECKE			
COMME		=	
	w code		1.
0	wher: E	K Sch	1/2
	37	4-321	35
UCN-21	14B (11-05)		

APPENDIX G

Y-12 GWPP PURGE WATER MANAGEMENT

Example of Hazardous Waste Identification Tag (UCN 2114A) for SID 2214 purge water

		- orang
	1	- orang bord
5110 PHAZARDOUS WASTE	18	
324		
HAZARDOUS WASTE	D	
IDENTIFICATION	450	
TO BE COMPLETED BY REQUESTER		
TISO	S. Contract	11 1
DISPOSAL FORM DATE		ave blank
ACCUMULATION START DATE	- le	cave blan
MATERIAL DESCRIPTION Porged groundwater:		
US EPA waste rode: FO39		
I DETA WROTE FORCE		
	100	
TYPE AND SIZE OF CONTAINER		
(for example, 55-gallon 55-gallon poly drum) LOCATION	Sec.	
OF MATERIAL SA-993/Bldg 9188		
SCYC 1328 / Y-12 ECD"		
SIGNATURE SIGNATURE date		
TO BE COMPLETED BY PLANT DISPOSAL COORDINATOR		
CHECKED BY DATE		
COMMENTS		
LT (GOV)		
Owner: E.R. Schultz	-	
574-3285		
	100	
UCN-2114A (2-06)	- 63	

APPENDIX G

Y-12 GWPP PURGE WATER MANAGEMENT

Example of Hazardous Waste Identification Tag (UCN 2114A) for SID 2216 purge water

	porange
	border
50 alle	
HAZARDOUS WASTE IDENTIFICATION	
TO BE COMPLETED BY REQUESTER	
DISPOSAL FORM DATE	= leave Hank
ACCUMULATION START DATE	t leave blank
MATERIAL Purged grandwater:	
USEPA waste codes: Doos, Doo.	,
DOIS, DOIS, DOZS, DOST, LOTO	
TYPE AND SIZE OF CONTAINER (for example, 55-gallon poly drum) steel drum)	
LOCATION OF MATERIAL SA-992 BIds 9108"	
SC01328 / Y-12ECD	i
SIGNATURE SIGNATURE / date	<u> </u>
TO BE COMPLETED BY PLANT DISPOSAL COORDINATOR CHECKED BY DATE	
COMMENTS Boxcode #	
Owner: E.R. Schultz	
57 4-3285	
UCN-2114A (2-06)	
SON E HANGE VO)	

APPENDIX G.2

WASTE STREAM IDENTIFICATION FOR PURGED GROUNDWATER

Table G.2. Waste stream identification (SID) and RCRA waste code for groundwater purged from wells to be sampled during CY 2009

Regime	CY 2009 Locations	CY 2009 Sampling Qtr	Waste Stream ID (SID #)	RCRA Waste Code
			GID 2214	F10.2.0
Bear Creek	GW-014	Q1	SID 2214	F039
	GW-053	Q1	SID 2212	•
	GW-058	Q1	SID 2212	•
	GW-065	Q1, Q3	SID 2212	F020
	GW-068	Q1	SID 2214	F039
	GW-071	Q1, Q3	SID 2214	F039
	GW-082	Q3	SID 2214	F039
	GW-085 GW-098	Q1	SID 2212	•
	GW-098 GW-100	Q1 Q1	SID 2212	•
	GW-100	Q1	SID 2212 SID 2212	•
	GW-101 GW-122	Q1	SID 2212 SID 2212	•
	GW-122 GW-127		NOT CONTAINED	•
	GW-127 GW-225	Q1 Q1	SID 2212	•
	GW-223 GW-229	Q1	SID 2212 SID 2212	•
	GW-229 GW-365	Q1	SID 2212 SID 2212	•
	GW-365	Q1	SID 2212 SID 2212	•
	GW-242	Q1	SID 2212 SID 2214	F039
	GW-246	Q3	SID 2214 SID 2212	
	GW-289	Q3 Q3	SID 2212 SID 2214	F039
	GW-289	Q3 Q1	SID 2214 SID 2212	
	GW-307 GW-315	Q1	SID 2212 SID 2212	•
	GW-526	Q1	SID 2212 SID 2212	•
	GW-537	Q3	SID 2212 SID 2212	•
	GW-601	Q3 Q1	SID 2212 SID 2212	•
	GW-615	Q1 Q1	SID 2216	D005
	GW-616	Q3	SID 2210 SID 2212	D003
	GW-623	Q3 Q1	SID 2212 SID 2214	F039
	GW-627	Q1, Q3	SID 2214	F039
	GW-629	Q1, Q3	SID 2214	F039
	GW-648	Q1, Q3	SID 2212	
	GW-653	Q1, Q3	SID 2212 SID 2214	F039
	GW-703	Q1 Q1	SID 2214 SID 2212	
	GW-703	Q1	SID 2212 SID 2212	•
	GW-725	Q1	SID 2212 SID 2212	•
	GW-726-02	Q2	NOT CONTAINED	•
	GW-726-04	Q2 Q2	NOT CONTAINED	•
	GW-726-06	Q2 Q2	NOT CONTAINED	•
	GW-726-09	Q2	NOT CONTAINED	•
	GW-726-12	Q2 Q2	NOT CONTAINED NOT CONTAINED	•
	GW-726-16	Q2	NOT CONTAINED	• -
	GW-726-20	Q2	NOT CONTAINED	<u>.</u>
	GW-726-23	Q2	NOT CONTAINED	•
	GW-738	Q1	SID 2212	•
	GW-740	Q1	SID 2212	• -
Chestnut Ridge	GW-174	Q4	NOT CONTAINED	<u>.</u>
onosmut Muge	GW-175	Q4	SID 2212	• -
	GW-176	Q4	SID 2212	• -
	GW-170	Q4 Q4	SID 2212 SID 2212	• -
	GW-180 GW-322	Q4 Q4	SID 2212 SID 2212	•

Table G.2. (continued)

Regime	CY 2009 Locations	CY 2009 Sampling Qtr	Waste Stream ID (SID #)	RCRA Waste Code
East Fork	55-2A		SID 2212	
East FOFK	55-2B	Q4 Q4	SID 2212 SID 2212	•
	55-2C		SID 2212 SID 2212	•
	55-3A	Q4 Q2, Q4		D020 D040
	55-3B	Q2, Q4 Q2, Q4	SID 2216 SID 2216	D039, D040 D039, D040, D043
	55-3C		SID 2216 SID 2216	D039, D040, D043
	56-1A	Q2, Q4 Q3	NOT CONTAINED	D039, D040, D043
	56-1C	Q3 Q3	NOT CONTAINED NOT CONTAINED	•
	56-2A	Q3 Q3	SID 2212	•
	56-2B	Q3 Q3	SID 2212 SID 2216	D039
	56-2C	Q3 Q3	SID 2216	D039, D040
	56-3A	Q3	SID 2210 SID 2212	D037, D040
	56-3B	Q3	SID 2212 SID 2212	•
	56-3C	Q3	SID 2212 SID 2212	•
	56-4A	Q3 Q2	SID 2212 SID 2212	•
	GW-153	Q2 Q4	NOT CONTAINED	•
	GW-133	Q2	SID 2212	•
	GW-219	Q2	SID 2212	•
	GW-220	Q2, Q4	SID 2216	D019
	GW-222	Q2, Q4 Q2	SID 2212	D017
	GW-240	Q4	SID 2212	•
	GW-251	Q2	SID 2212	•
	GW-269	Q2	SID 2212	•
	GW-270	Q2	SID 2212	•
	GW-272	Q2	SID 2212	•
	GW-274	Q2	SID 2216	D039
	GW-275	Q2	SID 2216	D005
	GW-332	Q2	SID 2216	D039
	GW-337	Q2	SID 2216	D039, D040
	GW-381	Q4	SID 2212	•
	GW-383	Q4	SID 2212	<u>.</u>
	GW-505	Q2	SID 2212	<u> </u>
	GW-508	Q2	SID 2216	D018
	GW-633	Q2	SID 2216	D018
	GW-656	Q2	SID 2216	D040
	GW-686	Q2	SID 2212	
	GW-690	Q2	SID 2212	
	GW-691	Q2, Q4	SID 2216	D039
	GW-692	Q2	SID 2212	•
	GW-698	Q2, Q4	SID 2216	D040
	GW-700	Q3	SID 2212	
	GW-722-14	Q3	SID 2212	•
	GW-722-17	Q3	SID 2212	•
	GW-722-20	Q3	SID 2212	•
	GW-722-22	Q3	SID 2212	•
	GW-722-33	Q3	NOT CONTAINED	•
	GW-735	Q3	NOT CONTAINED	•
	GW-744	Q3	NOT CONTAINED	•
	GW-747	Q3	NOT CONTAINED	•
	GW-750	Q2	NOT CONTAINED	•

Table G.2. (continued)

Regime	CY 2009 Locations	CY 2009 Sampling Qtr	Waste Stream ID (SID #)	RCRA Waste Code
East Fork (continued)	GW-763	Q4	NOT CONTAINED	•
	GW-765	Q2	NOT CONTAINED	•
	GW-769	Q2, Q4	SID 2212	ě
	GW-770	Q4	SID 2212	ě
	GW-775	Q3	NOT CONTAINED	ě
	GW-776	Q3	NOT CONTAINED	•
	GW-779	Q3	NOT CONTAINED	ě
	GW-781	Q3	NOT CONTAINED	ě
	GW-782	Q3	SID 2212	•
	GW-783	Q3	SID 2212	ě
	GW-791	Q3	SID 2212	ě
	GW-816	Q3	NOT CONTAINED	•
	GW-820	Q2	SID 2216	D039, D040
	GW-959	Q2	NOT CONTAINED	•
	GW-960	Q2	NOT CONTAINED	

DISTRIBUTION

U.S. DEPARTMENT OF ENERGY

TENNESSEE DEPARTMENT OF

ENVIRONMENT AND CONSERVATION

DOE OVERSIGHT

J. E. Sebastian *

ENVIRONMENTAL COMPLIANCE

DEPARTMENT

S. M. Field

J. P. Donnelly *

ELVADO ENVIRONMENTAL LLC

C. C. Hill T. R. Harrison *

S. B. Jones * E. R. Schultz *

O. D. Stevens BECHTEL JACOBS COMPANY LLC L. O. Vaughan

E. L. Berglund * H. K. Haase ANALYTICAL CHEMISTRY R. H. Ketelle *

ORGANIZATION L. M. Sims *

File-EMEF-DMC * L. K. Rawlins File-Y-12 Project PDCC *

INFORMATION TECHNOLOGY COMMODORE ADVANCED SCIENCES, INC.

M. E. Cleveland S. W. King

UT-BATTELLE, LLC

Y-12 Central Files *

9114DMC-01971865.6550-RC D. B. Watson Y-12 Records Services (Electronic copy- OSTI)

Note: * = receives hard copy version

YDCC - RC *